
Progression of Computing Knowledge and Skills

Strand: Computer Science

EYFS

YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 YEAR 6

Hardware
*Learning how to
operate a camera to
take photographs of
meaningful creations
or moments

• Learning how to
explore and tinker

Learning how to
explore and tinker
with hardware to find
out how it works

• Understanding that
computers and devices
around us use inputs

• Understanding what
a computer is and that
it’s made up of
different components
• Recognising that
buttons cause effects
and that technology
follows instructions

Understanding what
the different
components of a
computer do and how
they work together

• Drawing
comparisons across

Learning about the
purpose of routers

Learning that external
devices can be
programmed by a
separate computer

• Learning the
difference between
ROM and RAM

• Learning about the
history of computers
and how they have
evolved over time

• Using the
understanding of
historic computers to

with hardware to
develop familiarity and
introduce relevant
vocabulary

• Learning how to
operate a camera

• Recognising that a
range of technology is
used in places such as
homes and schools

• Learning what a
keyboard is and how
to locate relevant keys

• Learning what a
mouse is and
developing basic
mouse skills such as
moving and clicking

and outputs,
identifying some of
these

• Learning where keys
are located on the
keyboard • Learning
how to operate a
camera

• Learning how we
know that technology
is doing what we want
it to do via its output.

• Using greater control
when taking photos
with tablets or
computers

• Developing
confidence with the
keyboard and the
basics of touch typing

different types of
computers

 • Learning what a
server does

• Recognising how the
size of RAM affects the
processing of data

• Understanding the
fetch, decode, execute
cycle

design a computer of
the future

• Understanding and
identifying barcodes,
QR codes and RFID

• Identifying devices
and applications that
can scan or read
barcodes, QR codes
and RFID

• Acknowledging that
corruption can happen
within data during
transfer (for example
when downloading,
installing, copying and
updating files)

EYFS

YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 YEAR 6

Network and Data Representation

 • Understanding
what the internet is

 Learning what a
network is and its
purpose

• Identifying the key
components within
a network, including
whether they are
wired or wireless

• Recognising links
between networks
and the internet

Consolidating
understanding of the
key components of a
network

• Understanding
that websites &
videos are files that
are shared from one
computer to another

• Learning about the
role of packets

Learning the
vocabulary
associated with
data: data and
transmit

• Learning how the
data for digital
images can be
compressed

• Recognising that
computers transfer
data in binary and

• Understanding
that computer
networks provide
multiple services

• Learning how data
is transferred

 • Understanding
that computer
networks provide
multiple services,
such as the World
Wide Web, and
opportunities for
communication and
collaboration

understanding
simple binary
addition

• Relating binary
signals (Boolean) to
the simple
character-based
language, ASCII

• Learning that
messages can be
sent by binary code,
reading binary up to
8 characters and
carrying out binary
calculations

• Understanding
how bit patterns
represent images as
pixels

EYFS

YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 YEAR 6

Computational Thinking
Using logical reasoning
to read simple
instructions and
predict the outcome

• Learning that
decomposition means
breaking a problem
down into smaller
parts

• Using decomposition
to solve unplugged
challenges

• Using logical
reasoning to predict
the behaviour of
simple programs

• Articulating what
decomposition is •
Decomposing a game
to predict the
algorithms used to
create it

• Using decomposition
to decompose a story
into smaller parts

• Learning what
abstraction is

Using decomposition
to explain the parts of
a laptop computer •
Using decomposition
to explore the code
behind an animation

• Using repetition in
programs

 • Understanding that
computers follow
instructions

Solving unplugged
problems by
decomposing them
into smaller parts •
Using decomposition
to understand the
purpose of a script of
code

• Using decomposition
to help solve problems

• Identifying patterns
through unplugged
activities

• Decomposing
animations into a
series of images •
Decomposing a
program without
support

• Decomposing a story
to be able to plan a
program to tell a story

• Predicting how
software will work
based on previous
experience

Decomposing a
program into an
algorithm • Using past
experiences to help
solve new problems

• Writing increasingly
complex algorithms for
a purpose

• Developing the skills
associated with
sequencing in
unplugged activities

• Learning that an
algorithm is a set of
step by step
instructions used to
carry out a task, in a
specific order

• Follow a basic set of
instructions

• Assembling
instructions into a
simple algorithm

 • Learning that there
are different levels of
abstraction

• Explaining what an
algorithm is

• Following an
algorithm

• Creating a clear and
precise algorithm

• Learning that
computers use
algorithms to make
predictions

• Learning that
programs execute by
following precise
instructions

• Incorporating loops
within algorithms

• Using an algorithm
to explain the roles of
different parts of a
computer

• Using logical
reasoning to explain
how simple algorithms
work

• Explaining the
purpose of an
algorithm

 • Forming algorithms
independently

• Using past
experiences to help
solve new problems

• Using abstraction to
identify the important
parts when completing
both plugged and
unplugged activities

• Creating algorithms
for a specific purpose

• Writing more
complex algorithms for
a purpose

EYFS

YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 YEAR 6

Programming
Following instructions
as part of practical
activities and games
and learning to debug
when things go wrong

• Learning to give
simple instructions

• Learning that an
algorithm is a set of
instructions to carry
out a task, in a specific
order

Programming a Bee-
bot/Virtual Bee-bot to
follow a planned route

 • Learning to debug
instructions when
things go wrong

• Developing a howto
video to explain how
the Bee-bot works.

Using logical thinking
to explore software,
predicting, testing and
explaining what it does

• Using an algorithm
to write a basic
computer program

• Learning what loops
are

• Using logical thinking
to explore more
complex software;
predicting, testing and
explaining what it does

• Incorporating loops
to make code more
efficient

• Remixing existing
code

Understanding that
websites can be
altered by exploring
the code beneath the
site

• Coding a simple
game

• Using abstraction
and pattern
recognition to modify
code

• Programming an
animation

• Iterating and
developing their
programming as they
work

• Beginning to use
nested loops (loops
within loops)

• Debugging their own
code

• Debugging quickly
and effectively to
make a program more
efficient

• Remixing existing
code to explore a
problem

• Using and adapting
nested loops

 • Programming using
the language Python

• Experimenting with
programming a Bee-
bot/Bluebot and
learning how to give
simple commands

• Learning to debug
instructions, with the
help of an adult, when
things go wrong

• Learning to debug an
algorithm in an
unplugged scenario

• Incorporating loops
to make code more
efficient

• Using a more
systematic approach
to debugging code,
justifying what is
wrong and how it can
be corrected

• Incorporating
variables to make code
more efficient

• Remixing existing
code

• Using a more
systematic approach
to debugging code,
justifying what is
wrong and how it can
be corrected

• Writing code to
create a desired effect

• Using a range of
programming
commands

• Using repetition
within a program

• Amending code
within a live scenario

• Changing a program
to personalise it

• Evaluating code to
understand its
purpose

• Predicting code and
adapting it to a chosen
purpose

• Altering a website’s
code to create changes

