Year 1

Year 1	Concrete	Pictorial	Abstract
	Children add one more to a group to find one more. $8+1=9$	Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Use a number line to understand how to link counting on with finding one more. One more than 6 is 7 . 7 is one more than 6. Learn to link counting on with adding more than one. $5+3=8$
	Sort people and objects into parts and understand the relationship with the whole. The parts are 4 and 6 . The whole is 10.	Children draw to represent the parts and understand the relationship with the whole. The parts are 2 and 4 . The whole is 6 .	Use a part-whole model to represent the numbers. $6+4=10$ $6+4=10$

	Break apart a group and put back together to find and form number bonds. $3+4=7$ $6=2+4$	Use five and ten frames to represent key number bonds. $5=4+1$	Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero. $\begin{aligned} & 4+0=4 \\ & 3+1=4 \end{aligned}$
	Complete a group of 10 objects and countmore. 13 is 10 and 3 more.	Use a ten frame to support understanding of a complete 10 for teen numbers. 13 is 10 and 3 more.	Understanding teen numbers as a complete 10 and some more. 1 ten and 3 ones equal 13. $10+3=13$
	Children use knowledge of counting to 20 to find a total by counting on using people or objects.	Children use counters to support and represent their counting on strategy.	Children use number lines or number tracks to support their counting on strategy. $7+5=$ \square

	Children use bead strings to recognise how to add the 1s to find the total efficiently. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Children represent calculations using ten frames to add a teen and 1s. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Children recognise that a teen is made from a 10 and some 1 s and use their knowledge of addition within 10 to work efficiently. $3+5=8$ So, $13+5=18$
	Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10. So, 7 add 5 is 10 and 2 more.	Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 .	Use a part-whole model and a number line to support the calculation.

	Children arrange objects and remove to find how many are left. 1 less than 10 is 9 . 10 subtract 1 is 9 .	Children draw and cross out or use counters to represent objects from a problem. There are \square children left.	Children count back to take away and use a number line or number track to support the method. $9-3=6$
	Children separate a whole into parts and understand how one part can be found by subtraction.	Children represent a whole and a part and understand how to find the missing part by subtraction. $5-4=\square$	
	Arrange two groups so that the difference between the groups can be worked out. The difference between 8 and 6 is 2 .	Represent objects using sketches or counters to support finding the difference. $5-4=1$ The difference between 5 and 4 is 1 .	Children understand 'find the difference' as subtraction. $10-4=6$ The difference between 10 and 6 is 4 .

Cloverlea Calculation Policy Years 1 and 2

$\begin{gathered} \text { 오 } \\ \text { 당 } \end{gathered}$	Understand when and how to subtract 1s efficiently.	Understand when and how to subtract 1s efficiently.	Understand how to use knowledge of bonds within 10 to subtract efficiently.
	Use a bead string to subtract 1 s efficiently. $000000000-000-$ $\begin{gathered} 5-3=2 \\ 15-3=12 \end{gathered}$	$\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	$\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$
	For example: 18-12 Subtract 12 by first subtracting the 10 , thenthe remaining 2. First, subtract the 10, then take away 2.	For example: 18-12 Use ten frames to represent the efficient method of subtracting 12. First, subtract the 10 , then subtract 2.	Use a part-whole model to support the calculation. $\begin{array}{r} 19-14 \\ 19-10=9 \\ 9-4=5 \end{array}$ So, $19-14=5$
	For example: 12-7 Arrange objects into a 10 and some 1s, then decide on how to split the 7 into parts. 7 is 2 and 5 , so I take away the 2 and then the 5.	Represent the use of bonds using tenframes. For 13-5, I take away 3 to make 10, then take away 2 to make 8.	Use a number line and a part-whole model to support the method. $13-5$

Cloverlea Calculation Policy Years 1 and 2

	Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal.	Children draw and represent equal and unequal groups.	Three equal groups of 4 . Four equal groups of 3 .
	There are 5 pens in each pack... 5...10...15...20...25...30...35...40...	100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .
	Learn to make equal groups from a wholeand find how many equal groups of a certain size can be made. Sort a whole set people and objects intoequal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups	Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group.There are 2 groups.	Children may relate this to counting back in steps of 2,5 or 10 .
은 あ あ	Share a set of objects into equal parts and work out how many are in each part.	Sketch or draw to represent sharing into equal parts. This may be related to fractions.	10 shared into 2 equal groups gives 5 in each group.

Year 2

Year 2	Concrete	Pictorial	Abstract
0 0	Group objects into 10s and 1s． Bundle straws to understand unitising of 10s．	Understand 10s and 1s equipment，and link with visual representations on ten frames．	Represent numbers on a place value grid， using equipment or numerals．
$\begin{aligned} & \text { © } \\ & \text { o } \\ & \text { O} \\ & \text { 흠 } \\ & \text { } \end{aligned}$	Use known bonds and unitising to add 10s． I know that $4+3=7$ ． So，I know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． I know that $4+3=7$ ． So，I know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$

¢	Add the 10 s using a place value grid tosupport.	Add the 10 s using a place value grid to support.	Add the 10s represented vertically. Children must understand how the method relates to
$\stackrel{\rightharpoonup}{\bar{I}}$	T O		unitising of 10 s and place value.
$\stackrel{\square}{ \pm}$		T O	
잉			T O
	10 000 10		1 6 3 0
$\begin{aligned} & \text { 응 } \\ & \text { 흥 } \\ & \text { 응 } \\ & \frac{0}{0} \text { 을 } \end{aligned}$			$+$3 0 4 6
	16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	$\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two2-digit numbers	Add the 10s and 1s separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23$ $=58$	Add the 10s and 1s separately. Use apart-whole model to support. $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$ $32+11=43$	Add the 10s and the 1 s separately, bridging 10s where required. A number line can support the calculations.

	Use known number bonds and unitising tosubtract multiples of 10 . $\otimes \otimes \not \subset \not \subset \not \subset \not \subset \not \subset \not \subset$ 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 .		Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
			30	
		$10-3=7$ So, 10 tens subtract 3 tens is 7 tens.		
	Subtract the 1 s . This may be done in or outof a place value grid.	Subtract the 1s. This may be done in or out of a place value grid.		Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds.$\begin{array}{lllllllll} 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 \\ \hline \end{array}$
	T 0	T	0	
		明逄	$\begin{aligned} & \otimes \otimes \theta \\ & \otimes \otimes \otimes+ \\ & \otimes \otimes \otimes \end{aligned}$	
	Bridge 10 by using k	Bridge 10 by using known bonds.		Bridge 10 by using known bonds.$\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
	35-6 I took away 5 counters, then 1 more.	$\begin{aligned} & 35-6 \\ & \text { First, I will subtract 5, then } 1 . \end{aligned}$		

Cloverlea Calculation Policy Years 1 and 2

	Recognise equal groups and write as repeated addition and as multiplication.	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication.	Use a number line and write as repeated addition and as multiplication.
	Mo ?	$\begin{array}{ccc}000 & 000 & 000 \\ 00 & 00 & 00\end{array}$	
	3 groups of 5 chairs 15 chairs altogether	$\begin{aligned} & 3 \text { groups of } 5 \\ & 15 \text { in total } \end{aligned}$	$\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$
	Understand the relationship between arrays, multiplication and repeated addition. 1RM价MRM 4 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5 ... 5 groups of 5	Understand the relationship between arrays, multiplication and repeated addition.
	Use arrays to visualise commutativity. I can see 6 groups of 3.1 can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$

	Understand how to make equal groups froma whole. \square \square 2 2. \square \square 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements. $12 \div 2=6$	Understand how to relate division by grouping to repeated subtraction. There are 4 groups now. 12 divided into groups of 3 . $12 \div 3=4$ There are 4 groups.
	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10 . Use a bar model to support understanding of the link between times-table knowledge and division.	Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ $\text { I used the } 10$ times-table to help me. $3 \times 10=30$ I know that 3 groups of 10 makes 30, so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$

