Year 3			
	Concrete	Pictorial	Abstract
0 0 0 0 0 0 0 Π 0 0 0 0 0	Understand the cardinality of 100 , and the link with 10 tens. Use cubes to place into groups of 10 tens. - 3 (3) 10 - (3) (8) 30 - (3) - 40 - (4) © (4) 50 - (5) (5) 80 - * (3) 30 - 9 (3) 9	Unitise 100 and count in steps of 100. 100 200 300	Represent steps of 100 on a number line and a number track and count up to 1,000and back to 0 .
	Unitise 100s, 10s and 1s to build 3-digit numbers.	Use equipment to represent numbers to 1,000. Use a place value grid to support the structure of numbers to 1,000 . Place value counters are used alongside other equipment. Children should understand how each counter represents adifferent unitised amount.	Represent the parts of numbers to 1,000 using a part-whole model. $215=200+10+5$ Recognise numbers to 1,000 represented on a number line, including those betweenintervals.

	Use known facts and unitising to add multiples of 100 . $3+2=5$ 3 hundreds +2 hundreds $=5$ hundreds $300+200=500$	Use known facts and unitising to add multiples of 100. $3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$		Use known facts and unitising to add multiples of 100 . Represent the addition on a number line. Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$
	Use number bonds to add the 1 s . 10 LOLLIES $214+4=?$ Now there are $4+4$ ones in total. 4 $+4=8$ $214+4=218$	Use number b $\begin{aligned} & 245+4 \\ & 5+4=9 \\ & 245+4=249 \end{aligned}$	ds to add the 1s. Use number bonds to add the ls . $5+4=9$	Understand the link with counting on. $245+4$ Use number bonds to add the 1 s and understand that this is more efficient andless prone to error. $245+4=?$ I will add the $1 \mathrm{~s} .5+4$ $=9$ So, $245+4=249$

Cloverlea Calculation Policy Years 3 and 4

	Calculate mentally by forming the number bond for the 10 s . $234+50$ There are 3 tens and 5 tens altogether. 3 $+5=8$ In total there are 8 tens. $234+50=284$	Calculate mentally by forming the numberbond for the 10 s. $351+30=\text { ? }$ $\begin{aligned} & 5 \text { tens }+3 \text { tens }=8 \text { tens } \\ & 351+30=381 \end{aligned}$	Calculate mentally by forming the hiumbelfoind for the 10 s. $753+40$ I know that $5+4=9$ $\begin{aligned} \text { So, } 50+40 & =90 \\ 753+40 & =793 \end{aligned}$
	Understand the exchange of 10 tens for 1 hundred. \square	Add by exchanging 10 tens for 1 hundred. $184+20=?$ $184+20=204$	Understand how the addition relates to counting on in 10s across 100. $184+20=?$ $\begin{aligned} & \text { I can count in 10s ... } 194 \ldots 204184 \\ & +20=204 \end{aligned}$ Use number bonds within 20 to support efficient mental calculations. $385+50$ There are 8 tens and 5 tens. That is 13 tens. $\begin{aligned} & 385+50=300+130+5 \\ & 385+50=435 \end{aligned}$
	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinkingand adding of 1 s , then 10 s .	Use the vertical column method to represent the addition. Children must understand how this relates to place valueat each stage of the calculation.

	Children learn the times-tables as 'groupsof', but apply their knowledge of commutativity. I can use the $\times 3$ table to work out howmany keys. I can also use the $\times 3$ table to work out howmany batteries.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling.	Children understand the relationship between related multiplication and divisionfacts in known times-tables. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$
$\begin{aligned} & \text { Using knownfacts to multiply } 10 \text { s,for } \\ & \text { example } 3 \times 40 \end{aligned}$	Explore the relationship between known times-tables and multiples of 10 using placevalue equipment. Make 4 groups of 3 ones. Make 4 groups of 3 tens. What is the same? What is different?	Understand how unitising 10s supports multiplying by multiples of 10 . 4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$	Understand how to use known times-tablesto multiply multiples of 10 . $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$

	Understand how to link partitioning a 2-digit number with multiplying. Each person has 23 flowers. Each person has 2 tens and 3 ones. There are 3 groups of 2 tens. There are 3 groups of 3 ones. Use place value equipment to model the multiplication context. There are 3 groups of 3 ones. There are 3 groups of 2 tens.	Use place value linked with multip	port how partitioningis by a 2-digit number.	Use addition to complete multiplications of2digit numbers by a 1 -digit number. $\begin{aligned} & 4 \times 13=? \\ & 4 \times 3=12 \\ & 12+40=52 \\ & 4 \times 13=52 \end{aligned}$

	Use place value equipment to model how10 ones are exchanged for a 10 in some multiplications. $\begin{aligned} & 3 \times 24=? \\ & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$	Understand that multiplications may require an exchange of 1 s for 10 s, and also 10 s for 100s.$4 \times 23=?$T O ? ? ? 四 $4 \times 23=92$ $\begin{aligned} 5 \times 23 & =? \\ 5 \times 3 & =15 \\ 5 \times 20 & =100 \\ 5 \times 23 & =115 \end{aligned}$	Children may write calculations in expanded column form, but must understand the link with place value and exchange. Children are encouraged to write the expanded parts of the calculation separately. $\begin{aligned} & 5 \times 28=? \\ & \begin{array}{rl} 50 & \\ \hline 28 & \\ \times \quad 5 & \\ \hline 40 & 5 \times 8 \\ 100 & 5 \times 20 \\ \hline 140 & \end{array} \end{aligned}$

	Use equipment to understand that a remainder occurs when a set of objectscannot be divided equally any further． ｜｜｜｜｜｜｜｜｜｜｜｜｜ロロロ｜ There are 13 sticks in total． There are 3 groups of 4 ，with 1 remainder．	Use images to explain remainders． $22 \div 5=4$ remainder 2	Understand that the remainder is what cannot be shared equally from a set． $\begin{aligned} & 22 \div 5=? \\ & 3 \times 5=15 \\ & 4 \times 5=20 \\ & 5 \times 5=25 \ldots \text { this is larger than } 22 \\ & \text { So, } 22 \div 5=4 \text { remainder } 2 \end{aligned}$
	Use place value equipment to understandhow to divide by unitising． Make 6 ones divided by 3. Now make 6 tens divided by 3. What is the same？What is different？	Divide multiples of 10 by unitising． 12 tens shared into 3 equal groups． 4 tens in each group．	Divide multiples of 10 by a single digit usingknown times－tables． $180 \div 3=?$ 180 is 18 tens． 18 divided by 3 is 6. 18 tens divided by 3 is 6 tens． $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$

	Children explore dividing 2－digit numbers byusing place value equipment． First divide the 10s． Then divide the 1 s ．	Children explore which partitions support particular divisions． प111111 ロロ पा川ाया 4171711 I need to partition 42 differently to divide by 3.	Children partition a number into 10s and 1sto divide where appropriate． $\begin{gathered} 60 \div 2=30 \\ 8 \div 2=4 \\ 30+4=34 \\ 68 \div 2=34 \end{gathered}$ Children partition flexibly to divide where appropriate． $\begin{aligned} & 42 \div 3=? \\ & 42=40+2 \end{aligned}$ I need to partition 42 differently to divide by 3. $42=30+12$ $\begin{aligned} & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$
	Use place value equipment to understandthe concept of remainder． Make 29 from place value equipment．Share it into 2 equal groups． There are two groups of 14 and1 remainder．	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$ $29 \div 2=14 \text { remainder } 1$	Partition to divide，understanding the remainder in context． 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$ $17 \div 5=3 \text { remainder } 2$ $67 \div 5=13 \text { remainder } 2$ There are 13 children in each line and 2 children left out．

Year 4			
	Concrete	Pictorial	Abstract
	Use place value equipment to understandthe place value of 4 -digit numbers. 4 thousands equal 4,000. 1 thousand is 10 hundreds.	Represent numbers using place value counters once children understand the relationship between 1,000 s and 100s. $2,000+500+40+2=2,542$	Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment.Add 2,000. Now add the 1,000s. 1 thousand +2 thousands $=3$ thousands $1,405+2,000=3,405$	Use unitising and known facts to supportmental calculations. I can add the 100s mentally. $200+300=500$ So, $4,256+300=4,556$	Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$

Believing Achieving

	Understand the special cases of multiplyingby 1 and 0 .	Represent the relationship between the $\times 9$ table and the $\times 10$ table. Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table 1 know that $7 \times 5=35$ so 1 know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $6 \times 10=60$ $6 \times 9=60-6$
	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2. $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition.	Use partitioning to multiply 2-digit numbersby a single digit. $18 \times 6=?$ $\begin{aligned} 18 \times 6 & =10 \times 6+8 \times 6 \\ & =60+48 \\ = & 108 \end{aligned}$

	Use place value equipment to makemultiplications. Make 4×136 using equipment. I can work out how many 1s, 10s and 100s. There are 4×6 ones... 24 ones There are 4×3 tens ... 12 tens There are 4×1 hundreds ... 4 hundreds $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to3digit numbers by a single digit.	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.
	Represent situations by multiplying threenumbers together. Each sheet has 2×5 stickers.There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total. $\begin{aligned} & \underbrace{5 \times 2}_{10} \times 3=30 \\ & 10 \times 30 \end{aligned}$	Understand that commutativity can be usedto multiply in different orders. $\begin{array}{r} 2 \times 6 \times 10=120 \\ 12 \times 10=120 \end{array}$ $\begin{array}{r} 10 \times 6 \times 2=120 \\ 60 \times 2=120 \end{array}$	Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times \underbrace{2 \times 10}_{12 \times 5}= \\ & 120 \end{aligned}$ So, $24 \times 5=120$

	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array. $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$
	Use place value equipment to understandhow to use unitising to divide. 8 ones divided into 2 equal groups4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups4 hundreds in each group	Represent divisions using place value equipment. $9 \div 3=3$ 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	Use known facts to divide 10s and 100s bya single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$

	Partition into 10s and 1s to divide whereappropriate. $39 \div 3=?$ $\begin{gathered} 39=30+9 \\ 30 \div 3= \\ 10 \\ 9 \div 3=3 \\ 39 \div 3= \\ 13 \end{gathered}$	Partition into 100s, 10s and 1s using Base 10 equipment to divide where appropriate. $39 \div 3=?$ 3 groups of I ten $30 \div 3=10$ $9 \div 3=3$ $39 \div 3=13$	Partition into 100s, 10s and 1s using a partwhole model to divide where appropriate. $142 \div 2=?$ $\begin{aligned} & 100 \div 2=50 \\ & 40 \div 2=20 \\ & 6 \div 2=3 \\ & 50+20+3=73 \\ & 142 \div 2=73 \end{aligned}$
	Use place value equipment to explore whydifferent partitions are needed. $42 \div 3=?$ I will split it into 30 and 12 , so that I candivide by 3 more easily.	Represent how to partition flexibly where needed. $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7. $84 \div 7=12$	Make decisions about appropriate partitioning based on the division required. Understand that different partitions can beused to complete the same division.

